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Definitions

By a binary sequence of length n we mean an element of
{−1, 1}n. For a sequence φ, we denote by φ(k) the k-th entry of φ
(starting with k = 0).

φ := (φ(0), φ(1), . . . , φ(n − 1)).

Therefore φ : Zn −→ {−1, 1} is a set map.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Definitions

For an integer w with 0 ≤ w < n, let

Rφ(w) =
n−1∑
k=0

φ(k)φ(k + w)

be the (periodic) autocorrelation of φ at shift w . In the formula
above k + w has to be considered modulo n.

The autocorrelation sequence of φ is defined as

Rφ = (Rφ(0), ...,Rφ(n − 1)),

with Rφ(0) being the peak-value and all other values being
off-peak values.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Optimal autocorrelation

It is well-known that all periodic autocorrelations of a binary
sequence of length n are congruent to n mod 4. Moreover,

max
0<w<n

|Rφ(w)| ≥


0 for n ≡ 0 mod 4
1 for n ≡ 1 or 3 mod 4
2 for n ≡ 2 mod 4

(1)

It is said that a binary sequence φ is optimal if equality holds in
(1).

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Optimal autocorrelation. The case n ≡ 0 mod 4

If max0<w<n|Rφ(w)| = 0, the sequence φ is called perfect. The
only known perfect binary sequence up to equivalence is
(+ + +−). It is conjectured that there is no perfect binary
sequence of length greater than 4.

As an alternative to the lack of examples of perfect binary
sequences:

Perfect binary arrays (PBAs).

Almost perfect sequences.

. . .

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Definitions

Let s = (s1, . . . , sr ) be a vector of integers greater than one and let
G = Zs1 × · · · × Zsr . A binary s-array of energy n =

∏r
i=1 si is a

set map φ : G → 〈−1〉. Let us observe that if r = 1, φ is a
sequence.
φ is called a Perfect Binary Array (PBA(s)) if 0 6= g ∈ G implies

Rφ(g) =
∑
j∈G

φ(j)φ(g + j) = 0.

If φ is a PBA(s) then n =
∏r

i=1 si = 4k2 for some integer k.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Generalized Perfect Binary Arrays

Let z = (z1, . . . , zr ) where zi = 0 or 1. Let

G = Z(z1+1)s1
× · · · × Z(zr+1)sr .

Further define the following subgroups of G,

H = {h ∈ G : hi = 0 if zi = 0; hi = 0 or si if zi = 1}
K = {k ∈ H : k has even weight}.

Any g ∈ G may be written uniquely in the form g = l + h where
l ∈ G and h ∈ H.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Generalized Perfect Binary Arrays

Let φ : G → 〈−1〉 any set function. The expansion of φ with
respect to z is the function φ′ : G→ 〈−1〉 defined by

φ′(g) =

{
φ(l) if h ∈ K
−φ(l) if h /∈ K ,

where g = l + h.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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The expansion of φ with respect to z

As an example consider s = (2, 2), z = (1, 0) and

φ :

G︷ ︸︸ ︷
Z2 × Z2−→ {−1, 1}

+ +
+ − ,

then

φ′ :

G︷ ︸︸ ︷
Z4 × Z2−→ {−1, 1}

+ +
+ −
− −
− +

where H = {(0, 0), (2, 0)} and K = {(0, 0)}
J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Definitions

If φ is a binary sequence, that is, φ : Zn −→ {−1, 1}, then the
expansion of φ (with respect to z = 1) is the concatenation of φ
and −φ.

φ′ := (φ(0), . . . , φ(n − 1),−φ(0), . . . ,−φ(n − 1)).

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Definitions

φ : G −→ {−1, 1} is called a Generalized Perfect binary array,
GPBA(s), of type z, if g ∈ G− H implies

Rφ′(g) =
∑
j∈G

φ′(j)φ′(g + j) = 0.

Let s = (2, 2), z = (1, 0) and φ : Z2 × Z2 −→ {−1, 1}

+ +
+ − ,

Then φ is a GPBA(2,2) of type z = (1, 0).

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Known results. Jedwab, Hughes, Horadam . . .

φ n=
∏

si Cocycles Difference sets

PBA(s) 4k2
∂φ is an orthogonal

coboundary over
G = Zs1 × · · · × Zsr

Menon-Hadamard
DS

GPBA(s)
of type z

2 or 4k
fJ∂φis an orthogonal

cocycle over
G = Zs1 × · · · × Zsr

(n, 2, n, n/2)-RDS
in G/K relative

to H/K
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Question. The case n ≡ 2 mod 4

φ n =
∏

si Rφ(w) Cocycles Difference sets

Optimal
binary

sequences
(and arrays)

4k + 2 ±2 ?
Almost DS

Arasu, Ding. . . (2001)

GOBA(s)
of type z???

? ? ? ?
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Negaperiodic Golay pairs
Balonin, Dokovic. Negaperiodic Golay pairs and Hadamard matrices. In. Control Syst. 5, 2–17 (2015)

The negaperiodic autocorrelation function of a sequence φ and
shift w is

NRφ(w) = φ · φNw

where N is the the negacyclic matrix given by

N =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...
0 0 0 . . . 0 1
−1 0 0 . . . 0 0

.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Negaperiodic Golay pairs
Balonin, Dokovic. Negaperiodic Golay pairs and Hadamard matrices. In. Control Syst. 5, 2–17 (2015)

A pair (φ1, φ2) of sequences of length 2t is called a negaperiodic
Golay pair (NGP) if

NRφ1(w) + NRφ2(w) = 0, for all 1 ≤ w ≤ 2t − 1.

Facts:

NGPs are the associated pairs in Ito’s terminology (2000).

A NGP of length 2t can be used to directly construct a
Hadamard matrix of order 4t.

Let φ a sequence of length 2t. Then

Rφ′(w) = 2NRφ(w), for all 0 ≤ w ≤ 2t − 1.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Negaperiodic Golay pairs

Property

A pair (φ1, φ2) of sequences of length 2t is a negaperiodic Golay
pair (NGP) if and only if

Rφ′1(w) + Rφ′2(w) = 0, for all 1 ≤ w ≤ 2t − 1.

The pair (φ′1, φ
′
2) is called an extended NGP by Egan in

R. Egan. On equivalence of negaperiodic Golay pairs. Des. Codes Cryptogr. 1–10 (2016)

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Negaperiodic Golay pairs

Facts:

By definition, if φ is a Generalized Perfect Binary Sequence
(GPBS) of length 2t then Rφ′(w) = 0, for all 1 ≤ w ≤ 2t − 1.

As a consequence, every pair (φ1, φ2) of GPBS of length 2t
is a NGP.

Example: φ = (+,+) is a GPBS since φ′ = (+,+,−,−) and
Rφ′ = (4, 0,−4, 0). Then (φ, φ) is a NGP.

Φ =

[
+ +
− +

]
, H =

[
Φ1 Φ2

−ΦT
2 ΦT

1

]
=

 + + + +
− + − +
− + + −
− − + +

.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Negaperiodic Golay pairs

A negative result:

Result 4.8 of J. Jedwab. Generalized perfect arrays and Menon Hadamard difference sets. Des. Codes Cryptogr. 2,
19–68 (1992)

φ is a GPBS of length n iff n = 2.

Question: What kind of sequence could be a good alternative to
GPBS?

If φ is a sequence of length 2t (and t > 1), then

max
1≤w≤2t−1

|Rφ′(w)| ≥ 4.

Therefore, we choose as a “good” alternative to GPBS a
sequence φ such that

max
1≤w≤2t−1

|Rφ′(w)| = 4.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Negaperiodic Golay pairs

We say that φ is a Generalized Optimal Binary Sequence of
length 2t if for all 1 ≤ w ≤ 2t − 1,

t odd

|Rφ′(w)| =

{
0 if w is odd
4 if w is even

t even

|Rφ′(w)| =

{
4 if w is odd
0 if w is even

Here, we will deal with the case t odd.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Negaperiodic Golay pairs

Example: Let t = 3, φ1 = (+,−,+,+,+,+) and
φ2 = (+,+,−,+,+,+). Then

φ′1 = (+,−,+,+,+,+,−,+,−,−,−,−),
φ′2 = (+,+,−,+,+,+,−,−,+,−,−,−);

and
Rφ′1 = (12, 0, 4, 0,−4, 0,−12, 0,−4, 0, 4, 0),

Rφ′2 = (12, 0,−4, 0, 4, 0,−12, 0, 4, 0,−4, 0).

Therefore, φ1 and φ2 are GOBS of length 6. Moreover, (φ1, φ2) is
a NGP since Rφ′1(w) + Rφ′2(w) = 0, for all 1 ≤ w ≤ 5.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Negaperiodic Golay pairs

Examples

t φ1 φ2

3 (12, 4) (2, 1, 3)

5 (2, 13, 5) (3, 1, 2, 1, 3)

7 (2, 1, 5, 13, 3) (2, 1, 4, 2, 12, 3)

Table: NGPs from GOBS of length 2t, t = 3, 5, 7.

Notation (
1
+,

1
−,

4︷ ︸︸ ︷
+,+,+,+) = (1, 1, 4) = (12, 4).

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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2t ≡ 2 mod 4 − Analogous to GPBAs

Questions

How to find GOBSs?. . . and NGPs from GOBSs?

How to extend the definition of GOBS to arrays (GOBAs)?

An approach:

Try to look for equivalent combinatorial objects: Cocycles,
Difference sets . . .

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Question. The case n ≡ 2 mod 4

φ n =
∏

si Rφ(w) Cocycles Difference sets

Optimal
binary

sequences
(and arrays)

4k + 2 ±2 ?
Almost DS

Arasu, Ding. . . (2001)

GOBA(s)
of type z???

? ? ? ?
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Cocycles and Cocyclic matrices

Let G = {g1, g2, . . . , gn} be a group of order n.

f : G × G → C = {−1, 1} such that

f (gigj , gk)f (gi , gj) = f (gj , gk)f (gi , gjgk), ∀gi , gj , gk ∈ G .

Mf = [f (gi , gj)] binary matrix coming from f indexed by
G × G .

Example

f : Z2 × Z2 → C = {−1, 1}
(a, b) 7→ f (a, b) = (−1)ab is a cocycle

Mf =

(
f (0, 0) f (0, 1)
f (1, 0) f (1, 1)

)
=

(
1 1
1 −1

)
This is the Sylvester-Hadamard matrix of order 2.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Computing Cocyclic matrices

Given a group G = {g1, . . . , gn} and a base of cocycles over G .

B = Representatives
⋃

Coboundaries

Then,

Mf = R ·Mδi1
· · ·Mδiw

where R is a product of representative cocycles and Mδij
are

coboundaries.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Cocylic approach: Searching for Hadamard matrices

Cocyclic Hadamard test (1992, de Launey-Horadam)

General Cocyclic

Time O(t3) O(t2)

Space O(2n
2
) O(2n)

The “Cocyclic Hadamard” conjecture (1993, de Launey-Horadam)

There exist Cocyclic Hadamard Matrices of order 4t for all t.

The smallest order for which no cocyclic Hadamard matrix is
known is 188.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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RE of M

Definition

Let M = (mi ,j) be a cocyclic matrix of order n.

RE(M) =
∑
i>1

|
∑
j

mi ,j |

Proposition

Let M = (mi ,j) be a cocyclic matrix of order n.

RE(M) = 0 iff M is a cocyclic Hadamard matrix. The
associated cocycle is called orthogonal.

If n ≡ 2 mod 4 then RE(M) ≥ 2 · (n2 − 1).

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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RE of M

Proposition

Let M = (mi ,j) be a cocyclic matrix of order n.

RE(M) = 0 iff M is a cocyclic Hadamard matrix. The
associated cocycle is called orthogonal.

If n ≡ 2 mod 4 then RE(M) ≥ 2 · (n2 − 1).

Definition

Let G be a group of order n with n ≡ 2 mod 4. Then
ψ ∈ Z 2(G , 〈−1〉) is quasi-orthogonal if RE(Mψ) = 2 · (n2 − 1).

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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GOBSs and quasi-orthogonal cocycles

Theorem

There exists an explicit constructive equivalence between
Generalized Optimal Binary Sequences and quasi-orthogonal
cocycles over Z2t with t odd.

Proof of existence of quasi-orthogonal cocycles over all G of orders
2k + 2 ∀k ≥ 2 may be within reach. Existence verified
computationally for all G of orders ≤ 42 (so far; E. O’Brien).

Example

(R. Egan.) Take any Hadamard matrix with circulant core and let
A be the normalized core. Then

[
1 1
1 −1

]
⊗ A displays a

quasi-orthogonal cocycle.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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GOBSs and quasi-orthogonal cocycles

Theorem

There exists an explicit constructive equivalence between
Generalized Optimal Binary Sequences and quasi-orthogonal
cocycles over Z2t with t odd.

Proof of existence of quasi-orthogonal cocycles over all G of orders
2k + 2 ∀k ≥ 2 may be within reach. Existence verified
computationally for all G of orders ≤ 42 (so far; E. O’Brien).

Example

(R. Egan.) Take any Hadamard matrix with circulant core and let
A be the normalized core. Then

[
1 1
1 −1

]
⊗ A displays a

quasi-orthogonal cocycle.
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Example, n = 6, GOBSs from quasi-orthogonal cocycles

1 Compute a quasi-orthogonal cocycle,

Mψ =


+ + + + + +
+ + − − − +
+ − + + − +
+ − + − + −
+ − − + − −
+ + + − − −


2 Write Mψ in terms of the elements of a base.

Mψ =


+ + + + + +
+ + + + + −
+ + + + − −
+ + + − − −
+ + − − − −
+ − − − − −




+ + + + + +
+ + − − − −
+ − + + + −
+ − + + − +
+ − + − + +
+ − − + + +


3 We obtain the GOBS. φ = (+,−,+,+,+,+)

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Negaperiodic Golay pairs from quasi-orthogonal cocycles

t φ1 φ2

3 (12, 4) (2, 1, 3)

5 (2, 13, 5) (3, 1, 2, 1, 3)

7 (2, 1, 5, 13, 3) (2, 1, 4, 2, 12, 3)

9 (3, 1, 2, 13, 3, 1, 5) (2, 1, 2, 3, 2, 13, 5)

11 (3, 2, 2, 1, 2, 15, 7) −−
13 (3, 2, 2, 1, 2, 15, 7) (3, 3, 1, 3, 1, 2, 1, 2, 14, 2)

Table: NGPs from GOBS of length 2t.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Generalized Optimal Binary Arrays

Definition. We call φ a GOBA(s) of type z if g ∈ G− H implies

Rφ′(g) =
∑
j∈G

φ′(j)φ′(g + j) ∈ {−2|H|, 0, 2|H|},

such that

If z1 = 0, |R−1
φ′ (0)| = 0, |R−1

φ′ (−2|H|)| = |R−1
φ′ (2|H|)| = |G|−|H|

2

If z1 = 1, |R−1
φ′ (0)| = |G|

2 , |R−1
φ′ (−2|H|)| = |R−1

φ′ (2|H|)| =
|G|
2
−|H|
2 ,

where R−1
φ′ (n) = {g ∈ G− H : Rφ′(g) = n}.

If z = 0 the above definition reduces to: 0 6= l ∈ G implies∑
j∈G

φ(j)φ(l + j) = ±2.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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GOBAs and quasi-orthogonal cocycles

Theorem

There exists an explicit constructive equivalence between
Generalized Optimal Binary Arrays and quasi-orthogonal cocycles
over an abelian group of order 2t with t odd.

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Conclusions

φ n =
∏

si Rφ(w) Cocycles Difference sets

Optimal
binary

sequences
(and arrays)

4k + 2 ±2

quasi-orthogonal

coboundaries

over finite

abelian groups

Almost Difference sets

Arasu, Ding. . . (2001)

GOBA(s)
of type z

4k + 2 −2|H|, 0, 2|H|

quasi-orthogonal

cocycles

over finite

abelian groups

relative quasi-difference sets

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Quasi-orthogonal coboundaries

A coboundary is a cocycle of the form ∂φ where
∂φ(g , h) = φ(g)φ(h)φ(gh) for some (normalized) map
φ : G → 〈−1〉.

Lemma

If |G | = 4t + 2 and ψ ∈ Z 2(G , 〈−1〉) is a coboundary

RE (Mψ) ≥ 8t + 2. (2)

We say that a coboundary ψ is quasi-orthogonal, if equality holds
in (2).

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Quasi-orthogonal coboundaries

Lemma

If |G | = 4t + 2 and ψ ∈ Z 2(G , 〈−1〉) is a coboundary, if and only
if, |{g ∈ G \ {1} :

∑
h∈G ψ(g , h) = ±2}| = 4t + 1.

Example

G = Z6, Mψ =


+ + + + + +
+ − + − − −
+ + + − − +
+ − − + − −
+ − − − − +
+ − + − + +



J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Quasi-orthogonal coboundaries

Theorem

Suppose G abelian and |G | = 4t + 2. Let D be a subset of G of
cardinality k , with characteristic function f : G → GF (2) and
φ(x) = (−1)f (x). Define R∗ = {(φ(g), g) : g ∈ G} ⊂ Z2 × G .
Then the following statements are equivalent.

i. The coboundary ∂φ is quasi-orthogonal.

ii. D is a
(4t + 2, k , k − (t + 1), (4t + 2)k − k2 − (4t + 1)t)-ADS in G .

iii. R∗ is a normal “extremal” relative
(4t + 2, 2, 4t + 2, 2t + 1)-quasi difference set in Z2 × G
relative to Z2 × 1.

iv. f : G → GF (2) has optimum nonlinearity.

v. φ : G → {±1} is a binary array with optimal autocorrelation.
If G is the cyclic group, then φ is a binary sequence with
optimal autocorrelation.J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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Thank you!!!

J.A. Armario, D. Flannery Generalized binary sequences from quasi-orthogonal cocycles.
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