Statistical Alignment with k-Restricted Steiner Trees

R.B. Lyngs $\boldsymbol{~}^{1}$, J. Nielsen ${ }^{2}$, C.N.S. Pedersen ${ }^{2}$ \& J. Hein ${ }^{1}$
${ }^{1}$ University of Oxford ${ }^{2}$ Aarhus University

27th of June, 2008
Bayesian Phylogenetics

Statistical Alignment. . .

$$
P(D)=\sum_{x} P(x \rightarrow 1) P(x \rightarrow 2)
$$

Statistical Alignment. . .

$$
P(D)=\sum_{x} P(x \rightarrow 1) P(x \rightarrow 2) \sum_{y} P(y \rightarrow x) P(y \rightarrow 3)
$$

Statistical Alignment. . .

$$
\begin{gathered}
P(D)=\sum_{x} P(x \rightarrow 1) P(x \rightarrow 2) \sum_{y} P(y \rightarrow x) P(y \rightarrow 3) \\
\sum_{z}(z \rightarrow y) P(z \rightarrow 4)
\end{gathered}
$$

Statistical Alignment. . .

$$
\begin{aligned}
& P(D)=\sum_{x} P(x \rightarrow 1) P(x \rightarrow 2) \sum_{y} P(y \rightarrow x) P(y \rightarrow 3) \\
& \sum_{z}(z \rightarrow y) P(z \rightarrow 4) P(5 \rightarrow z) P(5)
\end{aligned}
$$

Statistical Alignment. . .

The infinite summations can be handled relatively efficiently, but still cause run-time to
$P(D)$ be exponentialin number रof seguences $(y \rightarrow 3)$

$$
\sum_{z}(z \rightarrow y) P(z \rightarrow 4) P(5 \rightarrow z) P(5)
$$

. . . with 2-Restricted Steiner Trees

$$
\begin{aligned}
& P(D)=\sum_{x} P(x \rightarrow 1) P(x \rightarrow 2) \sum_{y} P(y \rightarrow x) P(y \rightarrow 3) \\
& \sum_{z}(z \rightarrow y) P(z \rightarrow 4) P(5 \rightarrow z) P(5)
\end{aligned}
$$

. . . with 2-Restricted Steiner Trees

$$
P(D)=P(2 \rightarrow 1) P(3 \rightarrow 2) P(4 \rightarrow 3) P(5 \rightarrow 4) P(5)
$$

. . . with 2-Restricted Steiner Trees

By 'moving' observed sequences to internal nodes the problem simplifies to a series of pairwise alignments
$P(D)=P(2 \rightarrow 1) P(3 \rightarrow 2) P(4 \rightarrow 3) P(5 \rightarrow 4) P(5)$

. . . with k-Restricted Steiner Trees

$$
\begin{aligned}
& P(D)=\sum_{x} P(x \rightarrow 1) P(x \rightarrow 2) \sum_{y} P(y \rightarrow x) P(y \rightarrow 3) \\
& \sum_{z}(z \rightarrow y) P(z \rightarrow 4) P(5 \rightarrow z) P(5)
\end{aligned}
$$

. . . with k-Restricted Steiner Trees

$$
\begin{aligned}
& P(D)=\sum_{x} P(x \rightarrow 1) P(x \rightarrow 2) P(3 \rightarrow x) \\
& \quad \sum_{z} P(z \rightarrow 3) P(z \rightarrow 4) P(5 \rightarrow z) P(5)
\end{aligned}
$$

. . . with k-Restricted Steiner Trees

If we can align k sequences we only need to 'move' enough sequences to separate the full phylogeny into components with at most k
$P(D)$ observéd sequences ${ }^{2)} P(3 \rightarrow x)$

$$
\sum_{z} P(z \rightarrow 3) P(z \rightarrow 4) P(5 \rightarrow z) P(5)
$$

Steiner Tree Appr. (Robins \& Zelikovsky, 2000)

Input: A set of terminal nodes S and optimal Steiner trees on all subsets of S of size at most k
$T=$ minimum spanning tree on S
$H=$ complete graph on S
while there is a k-restricted full component K with gain $_{T}(K)>0$

Find k-restricted full component K with maximal
gain ${ }_{K}(T) / \operatorname{loss}(K)$
$H=H \cup K$
$T=$ minimum spanning tree on $T \cup K_{\text {loss-contracted }}$
Output the minimum spanning tree on H

Steiner Tree Appr. (Robins \& Zelikovsky, 2000)

Input: A set of terminal nodes S and optimal Steiner trees on all subsets of S of size at most k
$T=$ minimum spanning tree on S
$H=$ complete graph on S
while thegains ${ }^{2}(T)$ reandiross (k) freasurest K with gain $_{T}$ (Kimpfovement and worst case eventual loss of

Find k addingtedruplonempantoncurrenithsolationa!.
gain ${ }_{K}$ (Theylasan (bé) computed from the log $H=H$ probabilities of evolution on edges.
$T=$ minimum spanning tree on $T \cup K_{\text {loss-contracted }}$
Output the minimum spanning tree on H

Steiner Tree Appr. (Robins \& Zelikovsky, 2000)

Input: A set of terminal nodes S and optimal Steiner trees on all subsets of S of size at most k
$T=$ minimum spanning tree on S
$H=$ complete graph on S
while there is a k-restricted full component K with
gain $_{T}$ (K Guaranteed approximation ratio of 1.55 -
Find k correintlydbeingempenmentedvoinstatistical gain K_{K} (aligntnent K)
$H=H \overline{\cup K}$
$T=$ minimum spanning tree on $T \cup K_{\text {loss-contracted }}$
Output the minimum spanning tree on H

Drawbacks of Algorithm

- Need alignments of all subsets of up to k observed sequences, so for m sequences of length n running time is $\sum_{i=2}^{k}\binom{m}{i} n^{i}$ where P is the data probability computed on the optim a

Drawbacks of Algorithm

- Need alignments of all subsets of up to k observed sequences, so for m sequences of length n running time is $\sum_{i=2}^{k}\binom{m}{i} n^{i}$
- Approximation ratio is on log scale, so we are only guaranteed to find a tree with probability at least $P^{1 / 1.55}$ where P is the data probability computed on the optimal tree

Drawbacks of Algorithm

- Need alignments of all subsets of up to k observed sequences, so for m sequences of length n running time is $\sum_{i=2}^{k}\binom{m}{i} n^{i}$
- Approximation ratio is on log scale, so we are only guaranteed to find a tree with probability at least $P^{1 / 1.55}$ where P is the data probability computed on the optimal tree
- Approximation ratio of 1.55 is obtained for $k \rightarrow \infty$; for e.g. $k=8$ the approximation ratio is 1.74

Alternative Approach

Start from externally predicted phylogeny, e.g. obtained using neighbour-joining on pairwise distances

Alternative Approach

Find a series of edge contractions such that the final tree is a k-restricted Steiner tree, i.e. the largest set of sequences that needs to be aligned is k

Alternative Approach

Align each subset of sequences thus identified and combine alignments to a global alignment

Choosing Edge Contractions

Observation

Contracting an edge not incident to an observed sequence will not alter the subsets of sequences that have to be aligned (and we should never contract an edge incident to two observed sequences)
\qquad

Choosing Edge Contractions

Observation

Contracting an edge not incident to an observed sequence will not alter the subsets of sequences that have to be aligned (and we should never contract an edge incident to two observed sequences)

General Procedure

As we may postpone contracting an edge until it is incident to an observed sequence, for each observed sequence we can identify the edges it has allowed contraction of. These will constitute a subtree rooted at the observed sequence, and iff the set of edge contractions is optimal this forest will be a minimal almost spanning forest

Integer Linear Programming Formulation

For edge e and observed sequence s let x_{e} indicate whether e is contracted and $y_{e, s}$ whether s allowed the contraction of e. Let \mathcal{T} denote the set of minimal subtrees in the original phylogeny that need to contain at least one contracted edge.
Then we need to maximise

$$
\sum_{e} \text { weight }_{e} x_{e}
$$

subject to constraints
$\forall e: \sum_{s} y_{e, s}=x_{e}$
$\forall e, s: y_{e, s} \leq y_{e^{\prime}, s}$ where e^{\prime} is the next edge from e towards s
$\forall T \in \mathcal{T}: \sum_{e \in T} x_{e} \geq 1$

Conclusions

- General method is standard technique in Steiner tree approximation
- Starting from an external phylogeny, in particular, will make it feasible to align tens or hundreds of sequences (depending on subset size) within a rigorous framework
- Quality of inferences are likely to be highest for parameters, lowest for trees, with alignments somewhere in between
- Software still in development

