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The infinite summations can be handled
relatively efficiently, but still cause run-time to
be exponential in number of sequencesP(D) =
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By ‘moving’ observed sequences to internal
nodes the problem simplifies to a series of
pairwise alignments

P(D) = P(2 → 1)P(3 → 2)P(4 → 3)P(5 → 4)P(5)
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If we can align k sequences we only need to
‘move’ enough sequences to separate the full
phylogeny into components with at most k
observed sequencesP(D) =
∑

x

P(x → 1)P(x → 2)P(3 → x)
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z

P(z → 3)P(z → 4)P(5 → z)P(5)
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Steiner Tree Appr. (Robins & Zelikovsky, 2000)

Input: A set of terminal nodes S and optimal Steiner trees on
all subsets of S of size at most k

T = minimum spanning tree on S

H = complete graph on S

while there is a k-restricted full component K with
gainT (K ) > 0

Find k-restricted full component K with maximal
gainK (T ) / loss (K )

H = H ∪ K

T = minimum spanning tree on T ∪ Kloss-contracted

Output the minimum spanning tree on H
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Steiner Tree Appr. (Robins & Zelikovsky, 2000)

gainK (T ) and loss (K ) measures
improvement and worst case eventual loss of
adding component K to current solution T .
They can be computed from the log
probabilities of evolution on edges.
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Steiner Tree Appr. (Robins & Zelikovsky, 2000)

Guaranteed approximation ratio of 1.55 –
currently being implemented for statistical
alignment

Input: A set of terminal nodes S and optimal Steiner trees on
all subsets of S of size at most k

T = minimum spanning tree on S

H = complete graph on S

while there is a k-restricted full component K with
gainT (K ) > 0

Find k-restricted full component K with maximal
gainK (T ) / loss (K )

H = H ∪ K

T = minimum spanning tree on T ∪ Kloss-contracted

Output the minimum spanning tree on H

4 / 9



Drawbacks of Algorithm

Need alignments of all subsets of up to k observed
sequences, so for m sequences of length n running time is
∑k

i=2

(m
i

)

ni

Approximation ratio is on log scale, so we are only
guaranteed to find a tree with probability at least P1/1.55

where P is the data probability computed on the optimal
tree

Approximation ratio of 1.55 is obtained for k → ∞; for
e.g. k = 8 the approximation ratio is 1.74
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Alternative Approach
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Start from externally predicted phylogeny, e.g. obtained using
neighbour-joining on pairwise distances
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Find a series of edge contractions such that the final tree is a
k-restricted Steiner tree, i.e. the largest set of sequences that
needs to be aligned is k
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Alternative Approach
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Align each subset of sequences thus identified and combine
alignments to a global alignment
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Choosing Edge Contractions

Observation

Contracting an edge not incident to an observed sequence will
not alter the subsets of sequences that have to be aligned (and
we should never contract an edge incident to two observed
sequences)

General Procedure

As we may postpone contracting an edge until it is incident to
an observed sequence, for each observed sequence we can
identify the edges it has allowed contraction of. These will
constitute a subtree rooted at the observed sequence, and iff
the set of edge contractions is optimal this forest will be a
minimal almost spanning forest
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Integer Linear Programming Formulation

For edge e and observed sequence s let xe indicate whether e
is contracted and ye,s whether s allowed the contraction of e.
Let T denote the set of minimal subtrees in the original
phylogeny that need to contain at least one contracted edge.

Then we need to maximise
∑

e

weightexe

subject to constraints

∀e :
∑

s ye,s = xe

∀e, s : ye,s ≤ ye′,s where e′ is the next edge from e towards s

∀T ∈ T :
∑

e∈T xe ≥ 1
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Conclusions

General method is standard technique in Steiner tree
approximation

Starting from an external phylogeny, in particular, will make
it feasible to align tens or hundreds of sequences
(depending on subset size) within a rigorous framework

Quality of inferences are likely to be highest for
parameters, lowest for trees, with alignments somewhere
in between

Software still in development
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