XRATE

biowiki.org/XRATE

HMM emitting columns of amino acids

Ricin alignment; colors denote secondary structure

Finite continuous-time Markov chain + tree $+\mathrm{HMM}=$ Felsenstein + Viterbi

Thorne, Goldman, Jones; MBE, I996

Codons

Empirical 61x61 matrix trained on PANDIT (7738 protein families)

Kosiol, Holmes \& Goldman, MBE 2007

Parametric d_{N} / d_{s} models correctly reproduce PAML
Heger, Ponting \& Holmes, in prep

HMM emitting exons and introns

Intron flanked by two exons (simple example)
e.g. Pedersen \& Hein, Bioinf., 2003

Siepel \& Haussler, 2004

SCFG emitting basepaired columns

Hammerhead ribozyme

PFOLD
Knudsen \& Hein, Bioinformatics, 1999

SCFG emitting basepaired columns

Hammerhead ribozyme

PFOLD
Knudsen \& Hein, Bioinformatics, 1999

PFOLD phylo-grammar

PFOLD in xrate format

S
$\quad \mathrm{C} \quad \mathrm{L}(0.131)$
B
$F \rightarrow$ lnuc F^{*} rnuc
$F^{*} \rightarrow F(0.788)$
B (0.212)
$L \rightarrow F(0.105)$
\| U (0.895)

B $\quad \rightarrow \mathbf{L} \mathbf{S}$
$\mathbf{U} \rightarrow$ nuc $\mathbf{U *}$
U* \rightarrow End
; ; state S : the initial state. Goes to L or B (transform (from (S)) (to (L)) (prob 0.131)) (transform (from (S)) (to (B)) (prob 0.869))
; ; state F : emits a covarying base pair
(transform (from (F)) (to (LNUC F* RNUC)))
(transform (from (F*)) (to (F)) (prob 0.788))
(transform (from (F*)) (to (B)) (prob 0.212))
; ; state L: goes to U (unpaired) or F (paired)
(transform (from (L)) (to (F)) (prob 0.105))
(transform (from (L)) (to (U)) (prob 0.895))
; ; state B: generates a bifurcation
(transform (from (B)) (to (L S)))
; ; state U: emits a single unpaired base
(transform (from (U)) (to (NUC U*)))
(transform (from (U*)) (to ()) (prob 1))

Bioinformatics motivation

- Analyze multiple sequence alignments
- measure evolutionary rates in various contexts
- annotate ncRNAs, CDS's, motifs, pseudogenes, ...
- Develop versatile models, algorithms, tools
- "phylo-grammars"
- Expectation Maximization,"phylo-EM"
- Extensible: gap characters, lineage-specific rates, arbitrary grammars/models, parametric (c.f. HyPhy), ...

Phylo-Grammar literature

- Felsenstein \& Churchill. 1996.

Three-state phylo-HMM (rates .3, 2, I 0).

- Thorne, Goldman \& Jones. 1996.

Protein secondary structure phylo-HMM.

- Knudsen \& Hein. I 999.

Phylo-SCFG for RNA structure prediction.

- Pedersen \& Hein. 2003.

Phylo-HMM for gene prediction.

- Siepel \& Haussler. 2004.

Dinucleotide (CpG) null model.

The Expectation Maximization algorithm for estimating substitution rate matrices from multiple alignments with phylogenetic trees
a.k.a.
"Phylo-EM"

Phylo-EM (definitions)

$$
\begin{aligned}
\theta & =\{\pi, \mathbf{R}\} \\
p_{i}(t) & =P(x(t)=i) \\
\frac{d}{d t} \mathbf{p}(t) & =\mathbf{R p} \\
\mathbf{p}(0) & =\pi \\
\mathbf{p}(t) & =\pi \mathbf{M}(t) \\
\mathbf{M}(t) & =\exp (\mathbf{R} t) \\
& =\mathbf{U} \exp (\mathbf{D} t) \mathbf{U}^{-1}
\end{aligned}
$$

$$
x(t)=\text { state at time } t
$$

Equation of state

Diagonal form

$$
\mathbf{R}=\mathbf{U}^{-1} \mathbf{D} \mathbf{U}
$$

Phylo-EM (derivation)

$$
\begin{aligned}
\theta^{(n+1)} & =\operatorname{argmax}_{\theta} \mathcal{E}\left(\theta \mid \theta^{(n)}\right) \\
\mathcal{E}\left(\theta \mid \theta^{(n)}\right) & =\sum_{r} P\left(x \mid y, \theta^{(n)}\right) \log P(x, y \mid \theta)
\end{aligned}
$$

(general form of EM algorithm)

$$
y=\text { present-day sequences (observed) }
$$

$$
x=\text { ancestral sequences (unobserved) }
$$

$$
\mathcal{E}\left(\theta \mid \theta^{(n)}\right)=\sum_{i}\left(S_{i} \log \pi_{i}+D_{i} R_{i i}+\sum_{j \neq i} C_{i j} \log R_{i j}\right)
$$

$$
S_{i}=E[\# \text { of ancestral residues in state } i]
$$

$$
D_{i}=E[\# \text { of residues } \times \text { time spent in state } i]
$$

$$
C_{i j}=E[\# \text { of mutations } i \rightarrow j]
$$

Phylo-EM (algorithm)

$R_{i j} \leftarrow \frac{C_{i j}}{D_{i}} \quad$ (iterate to convergence)
$R_{i j}=$ Rate of substitution $i \rightarrow j$
(continuous-time Markov chain)
$C_{i j}=E[$ number of $i \longrightarrow j$ substitutions]
$D_{i}=E[$ dwell time in state $i]$
posterior expectations: $E[x] \equiv\langle x\rangle_{P(\text { history } 1 \text { data, } \boldsymbol{R})}$

On branch of length T, transition $a \rightarrow b$ is observed.

 Expected number of $i \rightarrow j$ substitution events: $C_{i j}(a, b, T)$$$
\begin{aligned}
\mathbf{R} & =\mathbf{U} \Lambda \mathbf{U}^{-1} \\
\exp (\mathbf{R} t) & =\mathbf{U} \exp (\Lambda t) \mathbf{U}^{-1}
\end{aligned}
$$

Diagonalize rate matrix. Integrate over substitution event time.

$$
\begin{aligned}
C_{i j}(a, b, T) & =\frac{1}{\exp (\mathbf{R} T)_{a b}} \int_{0}^{T} \exp (\mathbf{R} t)_{a i}\left(R_{i j} d t\right) \exp (\mathbf{R}(T-t))_{j b} \\
& =\frac{R_{i j}}{\exp (\mathbf{R} T)_{a b}} \sum_{k=1}^{N} U_{a k} U_{k i}^{-1} \sum_{l=1}^{N} U_{j l} U_{l b}^{-1} \mathcal{J}_{k l}(T)
\end{aligned}
$$

Integral for dwell time $D_{i}(a, b, T)$ can similarly be expressed in terms of...

$$
\mathcal{J}_{k l}(T)=\begin{array}{ll}
T \exp \left(\lambda_{k} T\right) & \text { if } \lambda_{k}=\lambda_{l} \\
\left(\exp \left(\lambda_{k} T\right)-\exp \left(\lambda_{l} T\right)\right) /\left(\lambda_{k}-\lambda_{l}\right) & \text { if } \lambda_{k} \neq \lambda_{l}
\end{array}
$$

Loop \& stem rates

- Can formulate evolutionary questions as phylo-grammar parameterization problems
e.g. "what is the ratio of substitution rates in loops compared to stems?"
- 323 RFAM families in 5 classes (miRNA, U*, sno*, IRES, riboswitch)
- Use XRate to estimate trees (Jukes-Cantor)
- Fit scaling factors to loop \& stem matrices

miRNA stems evolve slower than other ncRNAs

Trained on RFAM

Limitations of phylo-EM

- Advantages of phylo-EM
- Converges very quickly
- Counts are useful in themselves
- Disadvantages
- Gets stuck in local maxima
- Sensitive to initial seed
- Point estimate; no "error bars"
- An MCMC equivalent would be nice

EM-flavored MCMC

1. Sample θ from $g\left(\theta \mid \theta^{(n)}\right)$:

$$
\begin{aligned}
g\left(\theta \mid \theta^{(n)}\right) & =\frac{\exp \left(\mathcal{E}\left(\theta \mid \theta^{(n)}\right)\right)}{Z} \\
Z & =\int \exp \left(\mathcal{E}\left(\theta^{\prime} \mid \theta^{(n)}\right)\right) d \theta^{\prime}
\end{aligned}
$$

2. Accept new θ with Hastings probability

$$
h\left(\theta, \theta^{(n)}\right)=\frac{P(y \mid \theta)}{P\left(y \mid \theta^{(n)}\right)} \frac{g\left(\theta^{(n)} \mid \theta\right)}{g\left(\theta \mid \theta^{(n)}\right)}=\frac{P(y \mid \theta)}{P\left(y \mid \theta^{(n)}\right)} \exp \left(\mathcal{E}\left(\theta^{(n)} \mid \theta\right)-\mathcal{E}\left(\theta \mid \theta^{(n)}\right)\right)
$$

3. If accept, set $\theta^{(n+1)} \leftarrow \theta$

If reject, set $\theta^{(n+1)} \leftarrow \theta^{(n)}$

Code's at biowiki.org, thanks to...

Robert Bradley

Andrew Uzilov

Lars Barquist

and also... Oscar Westesson Avinash Varadarajan Yuri Bendaña Pete Klosterman Sharon Chao

Collaborators Marc Suchard Nick Goldman Carolin Kosiol Chris Ponting Andreas Heger Sue Celniker Mike Eisen

Funding NHGRI

Mitchell Skinner

