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Transducers
A probabilistic framework for modeling

insertions & deletions on phylogenetic trees

Ian Holmes
UC Berkeley
(Univ. Oxford)
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Transducers

• Operation of evolving a sequence along one 
branch of a phylogenetic tree

• Represent as a finite state machine

• Input “tape” X, output “tape” Y

!!"

!!"

" "

!!#

#

"

!!"
!!$

$
Match

Wait

Insert

Delete

Start

End

i

i

jj

TKF91

Pair HMM: P(X,Y)
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String transducers on a tree

Mohri, Computational Linguistics,1997
Hein, PSB, 2001; Holmes & Bruno, Bioinf., 2001 

Holmes, Bioinformatics, 2003

also Bishop & Thompson;
Thorne, Kishino & Felsenstein; 

Steel; Lunter, Miklos; Kim & Sinha; 
Satija, Pachter; Paten; Haussler ...



Curse of dimensionality

• Number of states in composite transducer 
increases exponentially with number of taxa

• So does the number of cells in the DP matrix

• Solution: Markov Chain Monte Carlo

• Hold some parts of the state path fixed, while 
resampling other parts (Gibbs sampling)



MCMC phylo-alignment

Sampling one branch at a time



Sampling one node at a time



tkfalign vs Clustal (BAliBase)

Holmes & Bruno, 2001

PRELIMINARY STUDIES (cont.) Critical evaluation of the TKF91 model: RP7

The following table shows the mean Sum of Pairs Score (SPS) for TKFalign on the
BAliBASE benchmark, compared to CLUSTALW [14, 106]. The TKFalign columns are “Prog.”
(progressive), “Ref.” (refined) and “Iter.” (MCMC sampler with iterative refinement).

BAliBASE subcategory Prog. Ref. Iter. CLUSTALW
Equidistant, similar lengths; high ID (> 35%) 0.775 0.784 0.774 0.884
Equidistant, similar lengths; medium ID (20%−40%) 0.673 0.689 0.693 0.790
Equidistant, similar lengths; low ID (< 25%) 0.654 0.658 0.669 0.787
Close family (> 25%) plus “orphan” outliers (< 20%) 0.814 0.827 0.839 0.928
Divergent subfamilies (< 20% between subfamilies) 0.481 0.525 0.528 0.693
Long gaps at the ends: N/C terminal extensions 0.348 0.359 0.372 0.672
Long gaps in the middle: Insertions 0.573 0.603 0.622 0.789

We drew several conclusions from this benchmark: (1) To be effective at alignment,
statistical alignment tools absolutely need “long indel” models (the equivalent of affine gap
penalties). This is missing from the TKF91 model, and only partially addressed by TKF92 (the
indels in TKF92 are not allowed to overlap). (2) It’s also essential to have substitution rate het-
erogeneity, so highly-conserved sites can be recognized. (This can be done by introducing the
structural context of an amino acid as a “latent variable”.) (3) Despite these drawbacks, for a
given model (such as TKF91), significant gains can be achieved by running an MCMC sampler
for some time (as opposed to using a “greedy” algorithm such as progressive alignment).

These conclusions strongly informed our subsequent studies in this area, as shown
by the timeline on the following page.

mammal .********....*..** mammal .*..***..****....*..**
primate *********....***** −→ primate **....*.*****....*****
human CAACAAGAA.ACTAAGGA human CAA...CAAG.AA.ACTAAGGA
chimp TGACAAATA....ACTAG chimp TG.A..C.AAATA....ACTAG
rodent .*********...*..** rodent .*..***..*****...*..**
mouse .AACCAATCC...G..AG mouse .A..ACC..AATCC...G..AG
rat .AACT..TCT...G..AG rat .A..ACT....TCT...G..AG

Tree: ((human,chimp)primate,(mouse,rat)rodent)mammal;

An example “node-sampling” move centered on the primate node, changing the pairwise
alignments of this ancestral node to its neighbors (i.e. mammal→primate, primate→human

and primate→chimp) and dropping one base from the imputed primate sequence. This move
is restricted to a window (highlighted in red) aligning to bases 2-6 of the human, chimp and

ancestral-mammal sequences. (Specifying window co-ordinates with respect to the
unchanging sequences, rather than the changing alignment, helps ensure reversibility.)

Although the move appears to introduce new gaps to the rodent/mouse/rat rows, these gaps
just track the new gaps in the mammal row; outside of the resampled clade, the pairwise

alignments (of the rodent sequences to their neighbors) are unchanged.

Prog. = Progressive alignment
Ref.   = Refinement
Iter.   = MCMC + refinement



tkfalign vs Clustal (BAliBase)
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The “Long Indel” Model

...........

Miklòs, Lunter & Holmes, 2004

Deletion events are “attached” to the leftmost residue that they remove.
If residue N survives, then residue N+1 is unaffected by deletion events from the left 

N N+1



Independent “chop zones”

Miklòs, Lunter & Holmes, 2004
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Generalized Pair HMM
Gap penalties
calculated by
direct enumeration
of trajectories
(shown left: N3,2)

Shown right:
the generalized

Pair HMM for the
“long indel” model



Long Indel vs Gotoh (Homstrad)

optimized l on total overlap. The overall performance of
the various alignment algorithms is summarized in table 3.

As an alternative to fixing the indel parameters l and
r for the entire test set, we also computed maximum like-
lihood values for the indel parameters, and time, for each
sequence pair individually. Because of computing con-
straints, we only did this for a subset of our full test set.
Results were similar to the results for the given procedure
(data not shown).

The relationships between the model-based and
Homstrad MLTEs are shown in figure 4. The TKF91 time
estimates often diverged to infinity, probably as a result of
a bad model fit. This problem was less pronounced in
TKF92, and all but absent for the long indel model. All
model-based estimates of divergence times tend to be lower
than estimates based on Homstrad alignments, with least-
squares slopes (on data with outliers removed) in the range
0.75–0.78 for the three models, all significantly different
from 1. The hypothesis that the slopes for all three models
were equal could not be rejected at a 5% level.

Assessed on HOMSTRAD overlap, the TKF91
model is the least accurate alignment method, though it
is comparable to TKF92. The long indel model is clearly
better, and as good as the simple Gotoh algorithm. A

heuristic explanation to the weak performance of TKF91
and TKF92 is that in the absence of strong homology,
TKF91 tends to give very fragmented alignments, whereas
TKF92 alignment is at the other extreme: it prefers as few
fragments as possible.

At higher sequence identity all models perform much
better. This can clearly be seen for the long indel model in
figure 5, which plots the overlap for the long indel and
Gotoh algorithms as a function of Homstrad MLTE.

We plotted the Viterbi alignment together with its
posterior labeling, and we indicated the correctly aligned
columns for several sequence pairs. We found that
posterior labeling is a good indicator of correctness of
alignment (fig. 6).

Discussion

Using rate grammar notation, we have presented an
evolutionary model that allows multiple-residue indels
without introducing hidden information such as fragment
boundaries. We described alignment algorithms for our
long indel model, using a finite trajectory approximation.

Table 2
Estimated Evolutionary Parameters for Evolutionary
Models

Alignment Method l r a

TKF91 0.043 — —
TKF92 0.038 0.67 —
Long indel 0.049 0.543 —
Long indel, mixed geometric 0.095 0.55; 0.9 0.4

Table 3
Performance of Alignment Methods, as Measured by
Alignment Accuracy or ‘‘Overlap,’’ the Percentage of
Alignment Columns Identical to Those of the HOMSTRAD
Structural Alignments

Alignment Method
Training Set
Optimizationa

Test Set
Overlap (%)

TKF91 ML 73.8
TKF92 ML 75.9
Gotoh (BLOSUM62) NCBI defaults 80.9
Long indel ML 81.1
Long indel, mixed geometric Accuracy 82.1
Gotoh (BLOSUM62) Accuracy 82.2

a Parameters were optimized over a training set to maximize either likelihood

or overlap. In addition, for the Gotoh algorithm we used NCBI (National Center for

Biotechnology Information) defaults for gap opening and gap extension parameters.

FIG. 4.—Comparison of TKF91, TKF92, and long indel MLTEs (y-
axis) with Homstrad MLTEs (x-axis), see Results for definitions. The
dotted line is x¼ y. The TKF time parameters sometimes ran away during
ML parameter estimation, and thus appear at the very top of the graph.
Note that the model-based MLTEs tend to be lower than the Homstrad
MLTE, for all models. Small local database misalignments could cause
such an effect; see Discussion.

FIG. 5.—Accuracy of Gotoh and long indel alignment algorithms, as
a function of Homstrad MLTE.

A ‘‘Long-Indel’’ Model for Sequence Alignment 535

Miklòs, Lunter & Holmes, 2004



“Every good work of software starts by scratching a 
developer’s personal itch” - Eric Raymond

2001 (Holmes & Bruno)
MCMC based on TKF91. Poor performance due to affine gaps, rate variation

2002 (Holmes & Rubin)
EM algorithm for estimating substitution rates & in particular rate variation

2003 (Holmes)
General algorithm for transducer composition on phylogenetic trees

2004 (Miklòs, Lunter & Holmes)
“Long Indel” model: affine-gap Pair HMMs from evolutionary models

2005-2006 (Holmes; Klosterman et al)
(Started extending transducer theory to RNA sequence analysis & SCFGs)
Enormous difficulties debugging transducer composition & sampling algorithms!

2007 (Holmes)
Phylocomposer
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HMMoC adapter

• Gerton Lunter’s HMMoC

• Hidden Markov Model Compiler

• Speedup factor 102-103



Handel MCMC moves
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MCMC Statistical Alignment

• With linear gap penalty (TKF91), accuracy on 
BAliBase is 10%-30% worse than CLUSTAL

• Using a latent-variable substitution model 
(≈covarions) improves accuracy by 5%-8%

• Using affine-gap transducer boosts accuracy past 
CLUSTAL, up to AMAP/PROBCONS level (shown)

• You also get ancestral reconstructions and 
alignment-free hypothesis-testing
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