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Abstract: In this short article we show that there are no compact three-dimensional Ricci solitons 

other than spaces of constant curvature. This generalizes a result obtained for surfaces by Hamil- 

ton [4]. The proof involves a careful analysis of the ODE f or the curvature which is associated 

to the Ricci flow. 
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Introduction 

In this paper we are concerned with the Ricci flow for Riemannian metrics 

&-I 
dt= -2 Ric(g) 

and, when the underlying manifold M” is compact, the normalized Ricci flow 

&I . I- 
dt = -2 k(g) + 2-p 

where T is the integral of the scalar curvature divided by the volume. (The normalization 

fixes the volume of M.) The Ricci flow, introduced by Richard Hamilton [a], has 

proved useful in extending classification results in Riemannian and KBhler geometry. 

In general, one starts with a metric go on M that satisfies some rather general curvature 

condition C, and proves that as the normalized Ricci flow runs, the metrics gt converge 

to a limiting metric which satisfies a more restrictive condition C’ (see, for example, [3, 
5,6]). In fact, the most well-known results assume the curvature of go is positive (in 

some sense) and show convergence to constant curvature. 

The case of compact surfaces is different. Since, in dimension two, the Ricci flow 
only changes the metric by a conformal factor, and one might expect it to converge to 
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the constant curvature metric appropriate to the topology of the surface. Indeed, this 

was demonstrated in [4] and [I]; there, the bulk of the analysis is devoted to the case 
M = S2, and this could be summarized as 

- prove long-time existence of the flow 

- prove convergence to a soliton 
_ classify solitons on S2. 

A s&ton for the normalized Ricci flow (1) is a metric that changes only by pullback 

by a one-parameter family of diffeomorphisms as it evolves under (1). It turns out that 

this is equivalent to the initial metric satisfying 

Cxg = -2 Ric(g) + 2:9 

for some vector field X. Classifying solitons on S2 is not too hard once one sees that 

X must be conformal and a divergence. The only vector field available forces a soliton 

metric to have an S1 symmetry, and by classifying solutions to an ODE, it follows that 

the only soliton on S2 has constant curvature (see [4, $101). 
In this paper we extend the classification of solitons to compact three-manifolds. We 

show that, in fact, the only solitons are constant curvature metrics. 

Solitons and breathers 

In general, a “breather” is a solution to an evolution equation that is periodic over 

time. For our purposes, it means a solution to the normalized Ricci flow that is periodic, 

up to diffeomorphism; that is, gT = +*gu for some fixed period T and diffeomorphism 4. 

It follows that breathers, like solitons, have uniformly bounded curvature and volume. 

It will turn out that in dimension three the Ricci flow does not admit any non-trivial 

breathers either. 

Proposition 1. Any so&ton or breather on a compact connected manifold 

Einstein with nonpositive Ricci curvature, or has positive scalar curvature. 

Proof. The scalar curvature obeys 

g = AR + 21 Rt I2 + iR(R - r) 

is either 

(2) 

where ‘Rt’ is the traceless part of the Ricci tensor. Consider a point in space and time 
where R is at a global minimum. If R < 0 there, then AR 2 0 and b’Rl& = 0 force 

Rt = 0 and R = r there; hence R is constant over M at this time. By applying the 
same argument at each point of M at this time, we the metric is Einstein. Otherwise, 

R > 0 always. 
Assume R has minimum value zero; using (a), we know that AR < 0 at this point. 

Let R be the open set where AR < 0 at this time. If 0 is not empty, then R can only 
achieve its infimum-zero-on the boundary of R, and by the Hopf maximum principle 
the outward normal derivative of R is negative there. This contradicts dR = 0 there. 
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Then R is empty, and since R achieves its maximum somewhere, R is constant-in 
fact, identically zero-by the maximum principle, and the metric is Einstein by the 

same argument as above. 

It follows that solitons and breathers have a positive lower bound for the scalar 

curvature, Now we can apply the main result of this paper: 

Theorem 2. If gt obeys the normalized Ricci flow on a compact 44’ and has scalar 

curvature bounded below by a positive constant Ro for all t 3 0, then there exists a 

function d(t) > 0 such that Ric(gt) 3 --4(t) gt and Jirnm 4(t) = 0. 

The proof of this theorem will depend on applying a maximum principle to the curvature 

tensor. We will actually run the unnormalized flow on the same initial metric, since 

the corresponding evolution equations for the curvature are simpler and we know how 

to go back and forth between the two flows. We will show that as the manifold shrinks 

to a point, the minimum as well as the maximum of the scalar curvature approach 

infinity. This is important since we will construct a pinching set-that is, a set defined 

by inequalities on the curvature that are preserved by the flow-that forces the lowest 

eigenvalue of Ric at a point to go towards zero as R + 00 at that point. 

Theorem 3. If gt obeys the normalized Ricci flow on compact M3 and has Ric 3 0, 

and average scalar curvature r bounded above for all t 3 0, then gt converges to a 

metric of constant positive curvature. 

Proof. In [3], H amilton has shown that either the Ricci curvature becomes positive 

immediately, or A4 splits locally as a product of a one-dimensional flat factor and a 

surface with positive curvature, and this splitting is preserved by the flow. In the former 

case, we know gt converges to constant positive curvature. To rule out the latter case, 

consider the evolution equation for T under the normalized flow: 

-$JR~ = - J($!$Ric-iRg)k. 

(Here we have fixed the volume to be one.) We can calculate the integrand on the right 

pointwise by diagonalizing the Ricci tensor. We obtain (2rg/n - 2 Ric, Ric -Rg/2) 6 

-rR/3 and dr/dt 3 r2/3. This would mean r increases without bound, contradicting 

our assumption. 

Corollary 4. There are no three-dimensional solitons or breathers on a compact 

connected M3 other than constant curvature metrics. 

Proof. The metrics gt must have r bounded, and by the proposition above, R > 0 or 

else the metric is Einstein, i.e. constant curvature. If R > 0 then, by our main result, 

the lower bound for the lowest eigenvalue of the Ricci tensor goes to zero from below as 

t -+ co. But since the minimum over M of the lowest eigenvalue is a periodic function 
of time, it must have been at least zero to begin with. Now Theorem 3 completes the 
proof. 
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In the remainder of this paper we will prove Theorem 2. 

Controlling the scalar curvature 

Suppose s is the time coordinate under the normalized flow, and let gt on hP be 

the unnormalized flow with the same initial data. Then g, and gt differ by a change in 

scale and a reparametrization in time: if $(t) = vol(gt)-2/n then g, is given by 

We assume gs evolves with scalar curvature bounded above R. > 0. Consider the 

evolution equation for the volume of gt: 

$l% vol(gt) = --T(a) = -r(gs)$(t) < -R. vol(gt)-“Y 

Since the integrals of the ordinary differential equation d/dt logv = -R0v-2fn go to 

zero in finite time, we know that vol(g,) hits zero at some finite time T. (Note that 

gt remains smooth until time T since gs is smooth.) Since R(gt) > $(t)Ro, the scalar 
curvature of gt goes to infinity everywhere on M at time T. 

Some three-dimensional geometry 

On a three-dimensional oriented inner product space V, the volume form gives us an 

isometry between V and A2V. Under this isometry, an orthonormal basis (er, e2, es) is 
carried to (ez A es,es A er,er A e2). Given any quadratic form on h2V, we can find an 

orthonormal basis of V so that the form is diagonalized in the corresponding basis for 

A2V. What this means for Riemannian geometry is that at every point p of a three- 

dimensional Riemannian manifold (M, g) we can choose an orthonormal basis for T,M 

that diagonalizes the curvature tensor; that is, 

R2323 = ml, R3131 = m2, R1212 = m3 

and all other components are zero. 
The rn; are the eigenvalues of the curvature operator. It is easy to check that in this 

frame the Ricci tensor is also diagonalized. We will assume 

then ml + m2 < ml + m3 < m2 + m3 are the eigenvalues of the Ricci tensor, and 

R = 2(mr t m2 t m3). 
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The maximum principle 

Rather than evolving a metric g on the tangent bundle, we will use the “Uhlenbeck 
trick” (see [3]), that is, evolve a gauge transformation on TM so that g pulls back to 

be a fixed metric 1~. If we diagonalize the curvature tensor Rm with respect to g at a 
point, we also diagonalize the its pullback %n with respect to h. Since the metric on 

V = h2T*h4 is fixed, the following maximum principle applies to G. 

Theorem 5 (Hamilton [3]). Let V be a vector bundle on a compact manifold M and 

h be a fixed metric on V. Suppose g is a metric on M and V a connection on V 

compatible with h, both possibly varying in time. Let 4 be a vector field on V tangent 

to the fibers. Assume X is a closed subset of V, convex in each fibre, invariant under 

parallel translation at all times, and such that solutions of the ODE dsjdt = d(s) for 

sections of V remain inside X. Then solutions of the heat equation ds/dt = &s + 4(s) 

also remain inside X. 

Fortunately, when we diagonalize the curvature, the right-hand side of the ODE 

that corresponds to the Uhlenbeck-normalized evolution equation for curvature is also 
diagonalized. Now we can write down a system of ODE for the eigenvalues of the 

curvature: 

ml = rnf + mpm3, m2 = rni •t mlm3, m3 = rni + mlmp. 

Since the right-hand side is homogeneous in the m;, dilation in space and time is a 

symmetry of this system. This means that the integral curves of this system in Iw3 
project onto a well-defined set of trajectories on the unit sphere (see Figure 1). 

Fig. 1. The projection is 

ml - m2 

Z=&(ml+m2+m3)' 
ml + m2 2 

Y= - -. 
ml+m2+m3 3 

The large triangle is Ric 2 0, and the small triangle is Rm 2 0. 
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We will just be interested in the behaviour of the ODE restricted to 

defined ~11 < 7112 < 7113 and ml t ?n2 + 7113 > 0. There, the integral 

attracted either to the line ml = m2 = m3 or to the line ml = m2 = 0. 

The pinching set 

the wedge 

curves are 

Our set X will be given by ml + m2 3 -at(z) for a positive function f of z = 

ml + m2 + m3 = R/2. Since X is defined in terms of eigenvalues relative to h it will 

be invariant under parallel translation. We will require 

1. f”(z) < 0, in order for X to be convex in each fibre; 

2. X to be preserved by the ODE; and 

3. limZ+oo f(z)/z = 0. 

This will then force (ml _t mz)/R, which is a dilation-invariant quantity, to be at 

least zero as R --+ 00. 

To compute condition (a), note that 

&ml t m2 + 2f(z)) 

= (7721 -I- 7722)~ - 27nlm2 + 2(z2 - (ml + m2)m3 - mlm;?)f’. 

Along the boundary of X given by ml + 7n2 = -2f(z) we need this derivative to 

be nonnegative. Assume f’ > 0; then for a fixed z the derivative is minimized when 

ma = ml. Then our condition for f becomes 

f’ 3 z2 J;~;zm;f,7n2 = 
(f + 4”f 

1 1 2f2t(zt f)2’ 
By making df/dz larger th an necessary we get a simpler ODE for f. Choose 

f’= &. 

Solutions of this ODE are invariant under the dilation f + X f, z + AZ; and, once f is 

positive it is an increasing function of z. Thus we can choose f so that infM ml t 77x2 > 

-f(infM z) for the initial metric go, so that the curvature of go lies inside X. 

To see that f” < 0, let p = z/f. Then 

dP 1 -= 
dz p=p:zp’ 

Since p is monotone increasing, f’ = l/(p $1) is decreasing. Finally, by separation of 

variables log p + p = log z + C, so limzioo p = co; thus f/z + 0. 

This ends the proof of Theorem 2. 
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